MINISTRY OF EDUCATION, SINGAPORE
in collaboration with
CAMBRIDGE ASSESSMENT INTERNATIONAL EDUCATION
General Certificate of Education Ordinary Level

CANDIDATE NAME

CENTRE NUMBER

s				

INDEX NUMBER

MATHEMATICS

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE ON ANY BARCODES.
Answer all the questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 90 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Gives answers in degrees to one decimal place.
For π, use either your calculator value or 3.142.

This document consists of 22 printed pages.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration
Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians
Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

1
(a) $a=\frac{3-b}{b+4}+2$

$$
\begin{aligned}
a & =\frac{3-(-6)}{-6+4}+2 \\
& =\frac{9}{-2}+2 \\
& =\frac{-5}{2}
\end{aligned}
$$

(i) Find a when $b=-6$.
(ii) Rearrange the formula to make b the subject.

$$
\begin{align*}
& a-2=\frac{3-b}{b+4} \\
& (a-2)(b+4)=3-b \\
& a b+4 a-2 b-8=3-b \\
& a b-2 b+b=3+8-4 a \\
& a b-b=11-4 a \\
& b(a-1)=11-4 a \\
& b=\frac{11-4 a}{a-1} \tag{3}
\end{align*}
$$

(b) Solve these simultaneous equations.

$$
\begin{align*}
& 8 x+5 y=9 \\
& 6 x-2 y=47 \tag{2}
\end{align*}
$$

You must show your working.

$$
\text { (2): } \begin{align*}
2 y & =6 x-47 \\
y & =3 x-23.5 \tag{3}
\end{align*}
$$

Sub (3) into (1):

$$
\begin{aligned}
8 x+5(3 x-23.5) & =9 \\
8 x+15 x-117.5 & =9 \\
23 x & =126.5 \\
x & =5.5
\end{aligned}
$$

$$
\begin{aligned}
\therefore y & =3(5.5)-23.5 \\
& =-7
\end{aligned}
$$

(c) Write as a single fraction in its simplest form $\frac{x}{2 x-1}-\frac{3}{x+4}$.

$$
\begin{aligned}
\frac{x}{2 x-1}-\frac{3}{x+4} & =\frac{x(x+4)-3(2 x-1)}{(2 x-1)(x+4)} \\
& =\frac{x^{2}+4 x-6 x+3}{(2 x-1)(x+4)} \\
& =\frac{x^{2}-2 x+3}{(2 x-1)(x+4)}
\end{aligned}
$$

Answer ...
(d) Solve the equation $\frac{11}{x-3}=3 x-1$.

$$
\begin{aligned}
& 11=(3 x-1)(x-3) \\
& 11=3 x^{2}-9 x-x+3 \\
& \therefore 3 x^{2}-10 x-8=0 \\
&(3 x+2)(x-4)=0 \\
& \therefore x=-\frac{2}{3} \quad \text { or } 4
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } x=\ldots \frac{-2}{3} \tag{3}
\end{equation*}
$$

2 (a) Jenny earns $\$ 5625$ each month.
She pays 8% of this amount into her pension.
She pays 5% of the remainder into a savings account.
Calculate the amount she has left after paying into her pension and her savings account.

$$
\begin{aligned}
& \text { Pension }=0.08 \times 5625=\$ 450 \\
& \begin{aligned}
\text { savings } & =0.05 \times(5625-450)=\$ 258.75 \\
\text { Amount left } & =5625-450-258.75 \\
& =\$ 4916.25
\end{aligned}
\end{aligned}
$$

Answer $\$$ \qquad 4916.25
(b) The cash price of a bed is $\$ 900$.

Jenny buys this bed on credit.
She pays a deposit of one fifth of the cash price.
She then pays 12 monthly payments of $\$ 64$.
Calculate the total amount Jenny pays for the bed.
Deposit $=\frac{1}{5} \times 900=\$ 180$.
$180+12(64)=\$ 948$

Answers....... 948
(c) Jenny pays monthly rent of $\$ 2064$.

This is 7.5% more than her monthly rent last year.
Calculate her monthly rent last year.

$$
\begin{aligned}
107.5 \% & =2064 \\
100 \% & =\frac{2064}{107.5} \times 100 \\
& =\$ 1920
\end{aligned}
$$

Answer $5 . . . \quad 1920$
(d) Jenny spends $€ 230$ in Paris using her credit card.

The credit card company converts the amount to Singapore dollars.
She is charged a 1.6% fee for the currency conversion.
The exchange rate between Singapore dollars ($\$$) and euros $(€)$ is $\$ 1=€ 0.65$.
Calculate the total amount on Jenny's credit card bill, including the fee.
Give your answer in dollars, correct to the nearest cent.

$$
\begin{aligned}
& \frac{230}{0.65}=s \$ 353.85 \\
& 353.85 \times 1.016=\$ 359.51
\end{aligned}
$$

Answers 3 . 359.51

3
(a) Complete the table of values for $y=\frac{x^{3}}{4}-2 x+3$.

x	-4	-3	-2	-1	0	1	2	3	4
y	-5	2.25	5	4.75	3	1.25	1	3.75	11

When $x=-4, y=\frac{1}{4}(-4)^{3}-2(-4)+3$
$=-5$
(b) On the grid opposite, draw the graph of $y=\frac{x^{3}}{4}-2 x+3$ for $-4 \leqslant x \leqslant 4$.
(c) Explain how your graph shows that there is only one solution of the equation $\frac{x^{3}}{4}-2 x+3=0$.

The graph of $y=\frac{x^{3}}{4}-2 x+3$ intersects the graph $y=0$ at one point only.
(d) The equation $x^{3}-10 x+4=0$ can be solved by finding the points of intersection of the straight line $y=a x+b$ and the curve $y=\frac{x^{3}}{4}-2 x+3 . \quad x^{3}-10 x+4=0$
(i) Find the value of a and the value of b.

$$
\begin{aligned}
& \frac{x^{3}}{4}-\frac{10 x}{4}+1=0 \\
& \frac{x^{3}}{4}-\frac{5}{2} x+1=0
\end{aligned}
$$

$$
\frac{x^{3}}{4}-\frac{5}{2} x+1-2 x+3=-2 x+3
$$

$$
\frac{x^{3}}{4}-2 x+3=\frac{1}{2} x+2
$$

Answer $a=$
$\frac{1}{2}$

$$
\begin{equation*}
b=\ldots 2 \tag{2}
\end{equation*}
$$

(ii) By drawing the line $y=a x+b$, solve the equation $x^{3}-10 x+4=0$.

$$
\text { Answer } x=-\ldots .3 .3 \quad 0.4 \text { or } \ldots . .
$$

x	-4	-3	-2	-1	0	1	2	3	4
y	-5	2.25	5	4.75	3	1.25	1	3.75	11

For $y=\frac{1}{2} x+2$:

x	-4	4
y	0	4

4 (a) The masses, in grams, of 200 apples of each of variety A and variety B are recorded. The cumulative frequency curves show the distributions of their masses.

(a) the median mass for variety A ,
\qquad
(b) the 60th percentile for variety B,

Answer 106
(c) the interquartile range for variety B .

$$
114-87=27 g
$$

\qquad
(ii) George sells apples in packs of 6 .

He uses apples with a mass between 80 g and 120 g and rejects the rest.
Which variety of apples would be better for George to use?
Justify your answer using appropriate figures.
A because there are $(180-24=156)$ apples of variety A falling under this range of mass as as.. [2] compared to $(164-32=132)$ apples of variety B.
(b) A box contains 9 apples of variety A and 7 apples of variety B.
(i) Two apples are taken from the box at random, without replacement.

Find, as a fraction in its simplest form, the probability that the two apples are the same variety.

$$
\begin{aligned}
& \text { Prob. of both from } A+\text { Prob. of both from B } \\
= & \left(\frac{9}{16} \times \frac{8}{15}\right)+\left(\frac{7}{16} \times \frac{6}{15}\right) \\
= & \frac{19}{40}
\end{aligned}
$$

(ii) These two apples are returned to the box and 4 apples of variety C are also added to the box. Three apples are taken from the box, at random, without replacement.

Find, as a fraction in its simplest form, the probability that two out of the three apples are of variety C .

$$
\begin{align*}
& (C, C, \text { not } C)+(C, \text { not } C, C)+(\text { not } C, C, C) \\
= & \left(\frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right) \times 3 \\
= & \frac{8}{95} \\
& \frac{8}{95} \tag{2}
\end{align*}
$$

The diagram shows two circles that touch at C.
A, B and C are points on the small circle, centre P.
C, D and E are points on the large circle, centre Q.
$A P C Q E$ and $B C D$ are straight lines.
(a) Show that triangle $A B C$ is similar to triangle $E D C$.

Give a reason for each statement you make.

1. $\angle A B C=\angle E D C=90^{\circ}$ (\triangle in semi-circle)

2. $\angle A C B=\angle E C D$ (vert .opp.
(b) The radius of the small circle is 5 cm and the radius of the large circle is 8 cm .
(i) Find the ratio area of triangle $A B C$: area of triangle $E D C$.

Give your answer in the form 1:n.
length ratio of $\triangle A B C: \triangle E D C=5: 8$
\therefore area ratio of $\triangle A B C: \triangle E D C=25: 64 \xrightarrow[64]{ } \quad 1: \frac{64}{25}$
Answer 1: 25.
(ii) Given that angle $B A C=28^{\circ}$, calculate the shaded area.

- $\angle B P C=56^{\circ}(\angle$ at $\odot=2 \angle$ at circumference $)$

Answer \qquad $6 \cdot 60$ cm^{2} [5]

Area of segment $\overparen{B C}=\frac{56^{\circ}}{360^{\circ}} \times \pi\left(5^{2}\right)-\frac{1}{2}(5)(5) \sin 56^{\circ}$

$$
=1.8543 \mathrm{~cm}^{2}
$$

Area of segment $\overparen{C D}=\frac{56^{\circ}}{360^{\circ}} \times \pi\left(8^{2}\right)-\frac{1}{2}(8)(8) \sin 56^{\circ}$

$$
=4.7471 \mathrm{~cm}^{2}
$$

Total shaded are $a=1.8543+4.7471$

$$
=6.60 \mathrm{~cm}^{2}
$$

6 (a) The position vector of point Q is $\binom{-7}{-3}$ and the position vector of point R is $\binom{5}{1}$.
(i) Find $|\overrightarrow{Q R}|$.

$$
\begin{aligned}
\overrightarrow{Q R} & =\binom{5}{1}-\binom{-7}{-3} \\
& =\binom{12}{4}
\end{aligned}
$$

$$
\begin{align*}
\therefore|\overrightarrow{Q R}| & =\sqrt{12^{2}+4^{2}} \tag{2}\\
& =\sqrt{160}=12.6 \text { units }
\end{align*}
$$

Answer
12.6 units
(ii) S is the point on $Q R$ with coordinates $(k,-2)$.

Find the position vector of S.

$$
\begin{aligned}
& \overrightarrow{S R} / / \overrightarrow{Q R} \\
& \overrightarrow{S R}=t \overrightarrow{Q R} \\
& \binom{5}{1}-\overrightarrow{O S}=t\binom{12}{4} \\
& \overrightarrow{O S}=\binom{5}{1}-\binom{12 t}{4 t} \\
& \text { since } \overrightarrow{O S}=\binom{k}{-2} \\
& \therefore\binom{K}{-2}=\binom{5-12 t}{1-4 t} \\
& \begin{aligned}
-2 & =1-4 t \\
4 t & =3 \\
t & =\frac{3}{4}
\end{aligned} \\
& \quad \therefore \quad=5-12\left(\frac{3}{4}\right) \\
&
\end{aligned}
$$

(b)

$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
P is the point on $A B$ such that $A P: P B=2: 3$.
M and N are the midpoints of $O P$ and $O B$ respectively.
(i) Express $\overrightarrow{A P}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.

$$
\begin{align*}
\overrightarrow{A P} & =\frac{2}{5} \overrightarrow{A B} \\
& =\frac{2}{5}(\overrightarrow{O B}-\overrightarrow{O A}) \\
& =\frac{2}{5}(\vec{b}-a) \quad \text { Answer } \tag{2}
\end{align*}
$$

(ii) Express $\overrightarrow{O M}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.

$$
\begin{array}{rlrl}
\overrightarrow{O P} & =\overrightarrow{O A}+\overrightarrow{A P} & \overrightarrow{O M} & =\frac{1}{2} \overrightarrow{O P} \\
& =a+\frac{2}{5} b-\frac{2}{5} a & & =\frac{1}{2}\left(\frac{3}{5} a+\frac{2}{5} b\right) \\
& =\frac{3}{5} a+\frac{2}{5} b & & \\
& =\frac{3}{10} a+\frac{1}{5} b \tag{2}
\end{array}
$$

(iii) What type of quadrilateral is $P B N M$?

Justify your answer using vectors.

$$
\begin{array}{rlrl}
\overrightarrow{P B} & =\frac{3}{5} \overrightarrow{A B} & \overrightarrow{M N} & =\overrightarrow{O N}-\overrightarrow{O M} \\
& =\frac{3}{5}(\underset{\sim}{b}-a) & & =\frac{1}{2} b-\left(\frac{3}{10} a+\frac{1}{5} b\right) \\
& =-\frac{3}{10} a+\frac{3}{10} b \\
\therefore \overrightarrow{P B} & =2 \vec{\sim} & & =\frac{3}{10}(b-a)
\end{array}
$$

Trapezium

$A B C D$ is a field on horizontal ground.
$A D=168 \mathrm{~m}, B D=325 \mathrm{~m}$ and $C D=151 \mathrm{~m}$.
The bearing of B from A is 155° and the bearing of D from A is 235°.
Angle $B D C=48^{\circ}$.
(a) Calculate the bearing of D from B.
$\angle A B N^{\prime}=180^{\circ}-155^{\circ}=25^{\circ}$
By Sine rule: $\frac{325}{\sin 80^{\circ}}=\frac{168}{\sin \angle D B A}$

$$
\angle D B A=30.602^{\circ}
$$

Bearing of D from $B=360^{\circ}-25^{\circ}-30.602^{\circ}$

$$
=304.4^{\circ}
$$

\qquad
(b) A fence is constructed around part of the field, triangle $B C D$. The cost of the fence is $\$ 85$ per metre.

Calculate the total cost of the fence.
Give your answer correct to the nearest 100 dollars.
Cosine rule:
$C B^{2}=\left.15\right|^{2}+325^{2}-2(151)(325) \cos 48^{\circ}$
$C B=250.50 \mathrm{~m}$
$\begin{aligned} \text { Perimeter of fence } & =151+325+250.50 \\ & =726.50 \mathrm{~m}\end{aligned}$
Total cost $=726.50 \times 85=\$ 61752.60$

The diagram shows a cuboid with height $x \mathrm{~cm}$.
The width of the cuboid is 6 cm more than its height.
The length of the cuboid is twice its width.
The length of the diagonal, $A G$, of the cuboid is 24 cm .
(a) Form an equation, in terms of x, to represent this information and show that it simplifies to

$$
x^{2}+10 x-66=0
$$

Step 1: $A F^{2}=(12+2 x)^{2}+(6+x)^{2}$

$$
\begin{aligned}
& =144+48 x+4 x^{2}+36+12 x+x^{2} \\
& =5 x^{2}+60 x+180
\end{aligned}
$$

Step 2: $24^{2}=x^{2}+A F^{2}$

$$
\begin{aligned}
& 576=x^{2}+5 x^{2}+60 x+180 \\
& \therefore 6 x^{2}+60 x-396=0 \\
& x^{2}+10 x-66=0 \text { (shown) }
\end{aligned}
$$

(b) Solve the equation $x^{2}+10 x-66=0$.

Give your solutions correct to two decimal places.

$$
\begin{aligned}
x & =\frac{-10 \pm \sqrt{10^{2}-4(-66)}}{2} \\
& =\frac{-10 \pm \sqrt{364}}{2} \\
& =\frac{-14.54 \text { or } 4.54}{(r e j \cdot)}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } x=.-14 \cdot 54 \text { or } x=.4 \cdot 54 \tag{4}
\end{equation*}
$$

(c) Calculate angle $G A F$.

$$
\begin{aligned}
\tan \angle G A F & =\frac{x}{A F} \\
& =\frac{4.54}{\sqrt{5(4.54)^{2}+60(4.54)+180}} \\
\therefore \angle G A F & =10.9^{\circ}
\end{aligned}
$$

Answer10.9..........

9 Zhao and Mei are planning their exercise routines.
They record their body weights and speeds for walking and jogging.

	Zhao	Mei
Body weight	80 kg	70 kg
Brisk walking speed	$5 \mathrm{~km} / \mathrm{h}$	$5 \mathrm{~km} / \mathrm{h}$
Jogging speed	$8 \mathrm{~km} / \mathrm{h}$	$9.5 \mathrm{~km} / \mathrm{h}$

They find the following information about the benefits of exercise.

Health advice

For recommended health benefits, adults should do at least 150 minutes of moderateintensity aerobic activity or at least 75 minutes of vigorous-intensity aerobic activity each week.
For additional health benefits, adults should increase their moderate-intensity aerobic activity to 300 minutes each week or an equivalent combination of moderate- and vigorousintensity aerobic activity.

1 minute of vigorous-intensity aerobic activity $=2$ minutes of moderate-intensity aerobic activity, e.g. 10 minutes of jogging $=20$ minutes of brisk walking.

Muscle-strengthening activities should be done on 2 or more days each week.

Approximate calories used during $\mathbf{3 0}$ minutes of aerobic exercise

	Body weight			
	60 kg	70 kg	80 kg	90 kg
Walking $5 \mathrm{~km} / \mathrm{h}$	105	120	135	150
Walking $6.5 \mathrm{~km} / \mathrm{h}$	130	150	170	190
Jogging $8 \mathrm{~km} / \mathrm{h}$	240	280	315	350
Jogging $9.5 \mathrm{~km} / \mathrm{h}$	300	345	390	435

Non-aerobic muscle-strengthening activities

1 hour of yoga uses approximately 3 calories per kilogram of body weight
1 hour of weight training uses approximately 4 calories per kilogram of body weight
(a) In their first week of exercise, they each plan to go for 4 brisk walks.

They will walk the same route each time.
The four walks together meet the minimum target for the time for recommended health benefits in one week.
(i) Work out the distance of one of these walks.

For recommended health benefits, adults should do at least 150 minutes of moderateintensity aerobic activity or at least 75 minutes of vigorous-intensity aerobic activity each week.

Each walk $=\frac{150 \mathrm{mins}}{4}=37.5 \mathrm{mins}$
$37.5 \mathrm{mins}=0.625 \mathrm{~h}$
\therefore distance of each walk $=0.625 \times 5 \mathrm{~km} / \mathrm{h}$ Answer $=3.125$
(ii) Work out how many more calories Zhao uses in these 4 walks than Wei does.

$$
\begin{aligned}
& \text { Zhao: } 135 \text { calories } / 30 \text { min } \\
& \quad \text { ie. } 135 \times 5=675 \text { calories } / 150 \mathrm{~min} . \\
& \text { Mei: } 120 \text { calories } / 30 \text { min } \\
& \text { ie. } 120 \times 5=600 \text { calories } / 150 \mathrm{~min} . \\
& \therefore \text { difference }=675-600=75
\end{aligned}
$$

$$
\text { Answer }
$$

[Question 9 is continued on the next page.]
(b) After one month they change their routines.

Zhao wants to get additional health benefits.
He decides to do a 4 km walk 3 times each week and do a 6 km jog 2 times each week.
He will also do a 45 -minute yoga class 2 times each week.
Mei wants to maintain recommended health benefits.
She decides to do an 8 km jog 2 times each week.
She will also do a 30 -minute weight training session 2 times each week.
Zhao says:
We will both meet our targets for exercise, but I will use about 50% more calories than Mei does during our exercise each week.

Is Zhao correct?
Justify your decision with calculations.
For additional health benefits, adults should increase their moderate-intensity aerobic activity to 300 minutes each week or an equivalent combination of moderate- and vigorousintensity aerobic activity.

1 minute of vigorous-intensity aerobic activity $=2$ minutes of moderate-intensity aerobic activity, e.g. 10 minutes of jogging $=20$ minutes of brisk walking.

Muscle-strengthening activities should be done on 2 or more days each week.

$$
\text { Zhao: } \begin{align*}
& \text { Total time clocked for walks }=\frac{12 \mathrm{~km}}{5}=2.4 \mathrm{~h} \\
&=144 \mathrm{mins} . \\
& \quad \begin{aligned}
& \text { Total time clocked for runs }=\frac{12 \mathrm{~km}}{8}=1.5 \mathrm{~h} \\
&=90 \mathrm{mins} \\
&=180 \mathrm{mins} \text { of } \\
& \text { moderate } \\
& \text { intensity } \\
& 144+180=324 \text { aerobic activity } \\
& \text { So Zhao clocked } 324 \mathrm{mins} \text { of } \\
& \text { moderate-intensity aerobic activities. } \\
& \text { He also did } 2 \text { days of muscle strengthening activities } \\
& \text { in a week. He did meet his target for exercise. }
\end{aligned}
\end{align*}
$$

[^0]Total calories used for Zhao:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{c}
\left.\frac{144}{30} \times 135\right) \\
\text { walks }
\end{array}+\begin{array}{c}
\left(\frac{90}{30} \times 315\right) \\
\text { runs }
\end{array}+\left(\begin{array}{l}
1.5 \times 3 \times 80) \\
\text { yoga }
\end{array}\right. \\
\begin{array}{l}
\text { For recommended health benefits, adults should do at least } 150 \text { minutes of moderate- } \\
\text { intensity aerobic activity or at least } 75 \text { minutes of vigorous-intensity aerobic activity each } \\
\text { week. }
\end{array} \\
\text { Mel: Total time clocked for runs }=\frac{16 \mathrm{~km}}{9.5}
\end{array} \\
& =1.68 \mathrm{~h} \\
&
\end{aligned}
$$

So Wei clocked 101.05 ming of vigorous-intensity aerobic activities.
She also did 2 days of muscle strengthening activities in a week (weights training). she met her target for exercise.

Total calories used for Wei:

$$
\begin{aligned}
& \frac{\left(\frac{101.05}{30} \times 345\right)+(4 \times 70)}{\text { runs }} \begin{array}{l}
\text { weights }
\end{array}=1442.075 \text { calories } \\
& \frac{1953-1442.075}{1953} \times 100 \%=26.2 \%
\end{aligned}
$$

However, Zhao did not use about 50\% more calories than Mei.

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

